Tag Archive for: Arthroscopic

Volume 6 | Issue 1 | January-June 2021 | Page 48-51 | Sachin Kumar, Rajiv Gogna, Daniel Morris, Amol Tambe


Author: Sachin Kumar [1] , Rajiv Gogna [1] , Daniel Morris [1] , Amol Tambe [1]

[1] Derby Shoulder Unit, Royal Derby Hospital, Derby, UK.

Address of Correspondence:
Dr. Amol Tambe,
Consultant, Upper Limb Surgeon, Derby Shoulder Unit, Royal Derby
Hospital, Derby, UK.
E-mail: amol.tambe1@nhs.net


Abstract

Symptomatic rotator cuff tears cause pain and impaired function. Arthroscopic rotator cuff repair is an established treatment when nonoperative management fails. However, debate exists regarding the requirement of concurrent subacromial decompression. This review aims to answer pertinent questions and outline relevant literature in the role of arthroscopic subacromial decompression in rotator cuff repair.
Keywords: Decompression, Cuff, Arthroscopic, Repair.


References

  1. Luime J, Koes B, Hendriksen I, Burdorf A, Verhagen A, Miedema H, et al. Prevalence and incidence of shoulder pain in the general population; a systematic review. Scand J Rheumatol. 2004;33(2):73–81.
  2. Van der Windt D, Koes B, Boeke A. Shoulder disorders in general practice: prognostic indicators of outcome. Br J Gen Pr. 1996;46(410):519–23.
  3. Micallef J, Pandya J, Low AK. Management of rotator cuff tears in the elderly population. Maturitas [Internet]. 2019 May;123:9–14.
  4. Mather RC, Koenig L, Acevedo D, Dall TM, Gallo P, Romeo A, et al. The Societal and Economic Value of Rotator Cuff Repair. J Bone Jt Surg [Internet]. 2013 Nov;95(22):1993–2000.
  5. Codman E. The Shoulder: Rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. Boston: Thomas Todd Co.; 1934. 1869–1940 p.
  6. Gartsman GM, O’Connor DP. Arthroscopic rotator cuff repair with and without arthroscopic subacromial decompression: a prospective, randomized study of one-year outcomes. J Shoulder Elb Surg [Internet]. 2004 Jul;13(4):424–6.
  7. Neer C, Poppen N. Supraspinatus outlet. Orthop Trans. 1987;(11):234.
  8. Bigliani L, Morrison D, April E. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;(10):228.
  9. Sela Y, Eshed I, Shapira S, Oran A, Vogel G, Herman A, et al. Rotator cuff tears: correlation between geometric tear patterns on MRI and arthroscopy and pre- and postoperative clinical findings. Acta radiol [Internet]. 2015 Feb;56(2):182–9.
  10. Gotoh M, Hamada K, Yamakawa H, Inoue A, Fukuda H. Increased substance P in subacromial bursa and shoulder pain in rotator cuff diseases. J Orthop Res [Internet]. 1998 Sep;16(5):618–21.
  11. Beard DJ, Rees JL, Cook JA, Rombach I, Cooper C, Merritt N, et al. Arthroscopic subacromial decompression for subacromial shoulder pain (CSAW): a multicentre, pragmatic, parallel group, placebo-controlled, three-group, randomised surgical trial. Lancet [Internet]. 2018 Jan;391(10118):329–38.
  12. Milano G, Grasso A, Salvatore M, Zarelli D, Deriu L, Fabbriciani C. Arthroscopic Rotator Cuff Repair With and Without Subacromial Decompression: A Prospective Randomized Study. Arthrosc J Arthrosc Relat Surg [Internet]. 2007 Jan;23(1):81–8.
  13. Xue G, Chahal K, Lim T, Hu S, Li S, Liu J. Titanium mini locking plate with trans-osseous sutures for the treatment of humeral greater tuberosity fracture osteosynthesis versus PHILOS: a retrospective view. Int Orthop. 2018;42(10):2467–73.
  14. Galliera E, Randelli P, Dogliotti G, Dozio E, Colombini A, Lombardi G, et al. Matrix metalloproteases MMP-2 and MMP-9: Are they early biomarkers of bone remodelling and healing after arthroscopic acromioplasty? Injury [Internet]. 2010 Nov;41(11):1204–7.
  15. Randelli P, Margheritini F, Cabitza P, Dogliotti G, Corsi MM. Release of growth factors after arthroscopic acromioplasty. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2009 Jan 31;17(1):98–101.
  16. MacDonald P, McRae S, Leiter J, Mascarenhas R, Lapner P. Arthroscopic Rotator Cuff Repair with and without Acromioplasty in the Treatment of Full-Thickness Rotator Cuff Tears. J Bone Jt Surgery-American Vol [Internet]. 2011 Nov;93(21):1953–60.
  17. Abrams GD, Gupta AK, Hussey KE, Tetteh ES, Karas V, Bach BR, et al. Arthroscopic Repair of Full-Thickness Rotator Cuff Tears With and Without Acromioplasty. Am J Sports Med [Internet]. 2014 Jun 14;42(6):1296–303.
  18. Song L, Miao L, Zhang P, Wang W-L. Does concomitant acromioplasty facilitate arthroscopic repair of full-thickness rotator cuff tears? A meta-analysis with trial sequential analysis of randomized controlled trials. Springerplus [Internet]. 2016 Dec 21;5(1):685.
  19. Shin S-J, Oh JH, Chung SW, Song MH. The Efficacy of Acromioplasty in the Arthroscopic Repair of Small- to Medium-Sized Rotator Cuff Tears Without Acromial Spur: Prospective Comparative Study. Arthrosc J Arthrosc Relat Surg [Internet]. 2012 May;28(5):628–35.
  20. Tetteh E, Hussey KE, Abrams GD, Gupta AK, Dhawan A, Karas V, et al. A Prospective Randomized Trial of Functional Outcomes Following Rotator Cuff Repair With and Without Acromioplasty. Orthop J Sport Med [Internet]. 2013 Sep;1(4_suppl):2325967113S0010.
  21. Cheng C, Chen B, Xu H, Zhang Z, Xu W. Efficacy of concomitant acromioplasty in the treatment of rotator cuff tears: A systematic review and meta-analysis. van der Linde JA, editor. PLoS One [Internet]. 2018 Nov 15;13(11):e0207306.

22. Dabija DI, Jain NB. Minimal Clinically Important Difference of Shoulder Outcome Measures and Diagnoses. Am J Phys Med Rehabil [Internet]. 2019 Aug;98(8):671–6.


How to Cite this article: Kumar S, Gogna R, Morris D, Tambe A | Should We be Routinely  Performing
Arthroscopic Subacromial Decompression During Rotator Cuff Repair (RCR)?| Asian
Journal of Arthroscopy | January- June 2021; 6(1): 48-51.

(Abstract Text HTML)      (Download PDF)


Vikram V Kadu, K A Saindane, Ninad Goghate, Neha N Godghate

Volume 1 | Issue 1 | April – Jun 2016 | Page 43-45


Author: Vikram V Kadu [1], K A Saindane [1], Ninad Goghate [1], Neha N Godghate [1]

[1] ACPM Medical College, Dhule – 424001, Maharashtra,  India

Address of Correspondence

Dr. Vikram V. Kadu
ACPM Medical College, Dhule – 424001, Maharashtra India
Email : vikram1065@gmail.com


Abstract

Introduction:Arthroscopic reduction and internal fixation (ARIF) of tibial intercondylar eminence fractures is the emerging state-of-the-art. Tibial eminence fractures underwent arthroscopic evaluation when closed reduction after aspiration failed to yield an anatomic reduction. Arthroscopic reduction and fixation of avulsion fractures of the tibial eminence restores the length of the ACL, provides stable fixation promoting early motion.
Materials and Methods: This is a retrospective study conducted between 2010 and 2012. All 40 patients suffering ACL injury with tibial eminence fracture were stabilized in the emergency room followed by above knee slab. Once the patient was stabilized surgery (Arthroscopic reduction and internal fixation) was performed. The technique involved arthroscopic placement of a 3.5-mm cannulated compression screw into the tibial eminence. Patients were placed in a standard postoperative ACL protocol. Assessment was done using knee society score.
Result: All fractures demonstrated radiographic healing by 8 weeks, and none of the patients had subjective complaints of pain and instability. At 2 yrs follow-up all the patients had functional range of motion (00-1600) and returned successfully to their previous work. In our series we didn’t come across any complication.
Conclusion: Arthroscopic reduction and screw fixation with a cannulated screw is a simple, effective, and safe technique providing stable fracture fixation to allow immediate mobilization with minimal loss of extension.
Key words : ACL avulsion fracture, Arthroscopic, cannulated screw


Introduction

The intercondylar eminence serves as the point of attachment for portions of the menisci and the anterior and posterior cruciate ligaments(1). In addition to disrupting ACL continuity, intercondylar eminence avulsion fractures, depending on size, may affect weight-bearing aspects of the articular surface of the tibia.
Fracture of the tibial intercondylar eminence is a consequence of ACL avulsion at its insertion(2). Mechanism being same as of ACL rupture it is pulled from the tibia with a piece of the bony plateau. These injuries are commonly related to high energy trauma usually road traffic accidents and have high incidence of associated injuries.
Fractures of the tibial intercondylar eminence were classified into 3 types3: type I, minimal or nondisplaced; type II, partially displaced or hinged fracture; and type III, completely displaced. Surgical treatment is currently recommended for type II and III displaced fractures. Open methods were conventionally used to fix these avulsions however now arthroscopic treatment is the standard of care. Most of the existing literature is from the western world and publications from India are very few. We present our series of arthroscopic fixation done for ACL avulsion fracture performed at a district level rural center in India

Materials and Methods:
This is a retrospective study conducted on 40 patients suffering ACL injury with tibial eminence fracture between 2010 and 2012. Patients were stabilized in the emergency room followed by above knee slab. Of the 40 patients 27 were male and 13 female. 26 were right sided and 14 left sided. 28 suffered RTA and 12 had fall. Mean age of the patient was 35 yrs (range 23 – 47 yrs). After stabilizing the patient, surgery (Arthroscopic reduction and internal fixation with 3.5 mm screw) was performed. The technique involved arthroscopic placement of a 3.5-mm cannulated compression screw into the tibial eminence. Patients were placed in a standard postoperative ACL protocol. All patients were clinically and radiographically reviewed for 2 years and assessed with knee society score.

Surgical Technique:
In supine position with the knee flexed 70° to 90°. Pneumatic tourniquet was used. Standard knee arthroscopy was performed with anterolateral and anteromedial portals. In all patients, an additional antero-superior parapatellar portal was used for wider and better view of the intercondylar tibial eminence.

Figure 1: showing the entry portals.

Figure 1: showing the entry portals.

Through the standard anteromedial portals, using Normal saline under gravity the hemarthrosis was washed out using the shaver, the hematomas at the fracture site were debrided, and the joint was inspected for the presence of any other intra-articular lesions. Turning the optics anteriorly, the intermeniscal ligament was identified, and in cases with interposition, the ligament was shifted aside using a probe introduced through the standard anteromedial portal to make reduction possible. Sometimes the ligament needs to be partially cut. After the anatomic condition and integrity of the ACL were carefully confirmed, the probe was then used via the anteromedial portal to reduce the fracture in its bony bed.
Under arthroscopic vision, the midpoint of the inferior non-articular surface of the patella is selected and a guide wire of 1.2 mm was then passed perpendicular to this surface, in the direction of the center of the fracture site with the knee flexed to approximately 70° to 90°. The portal was then drilled using a 2.7 mm cannulated drill bit and fragment was fixed with 3.5 mm cannulated screw.

Case: 30 yrs old male labourer by occupation suffered an RTA and presented with complaints of pain and swelling over left knee joint and restriction of movements. Clinically the patient had instability at the knee joint. X-rays both AP and Lateral view were taken (Fig 2A) which showed fracture tibial eminence. The patient was given above knee slab and was admitted. Surgery (Arthroscopic reduction and internal fixation with 3.5 mm screw) was performed. Post- operatively the patient was given long leg knee brace. Physiotherapy in the form of Quadriceps exercises was started immediately and knee bending (upto 30 degrees) and partial toe touch bearing walking with walker with long leg knee race on post-op day 2 once the drain was removed. Patient was followed up after 1 month (Fig 2B). X ray showed uniting fracture. Knee bending was increased from 30-60 degrees and 50 % weight bearing allowed. At 2 months (Fig 2C) X ray showed radiological union and patient was advised full weight bearing walking with walker and brace, knee ROM exercises were started and complete flexion and extension was allowed. At 12 weeks (Fig 2D). X rays at 10 months follow-up (Fig 2E). At 2 yrs and 7 months follow up (Fig 2F). The patient has full range of motion (0-160o) (Fig 2G &H) and returned to his previous work.

Figure A: pre-op AP and LAT view

Figure 2A: pre-op AP and LAT view

Figure B: Radiograph at 1 month follow-up

Figure 2B: Radiograph at 1 month follow-up

Figure C: Radiograph at 2 months follow-up

Figure 2C: Radiograph at 2 months follow-up

Figure D: Radiograph at 3 months follow-up

Figure 2D: Radiograph at 3 months follow-up

Figure E: Radiograph at 10 months follow-up

Figure 2E: Radiograph at 10 months follow-up

Figure F: Radiograph at 2yrs and 7 months follow-up

Figure 2F: Radiograph at 2yrs and 7 months follow-up

Figure 2G: Radiograph at 10 months follow-up

Figure 2G: Radiograph at 10 months follow-up

Figure 2H: Radiograph at 10 months follow-up

Figure 2H: Radiograph at 10 months follow-up

Observations and Results:
All the 40 patients were assessed at the end of 2 yrs and we found out that, all patients had functional range of movement of the knee joint and they returned to their previous work. There was no evidence of any infection or complication in our study. There was no failure of fixation and no other complications in our series

Discussion:
Tibial spine fractures usually result from a twisting movement of the knee. Abnormal valgus/varus or hyperflexion /hyperextension forces can cause avulsion of the tibial eminence. Such injuries are common after road traffic accidents or sporting activities.
Arthroscopic reduction internal fixation of intercondylar eminence avulsion is recommended for all displaced type III fractures and should be considered in all cases of displaced type II fractures. Various studies by different authors have been reported for these kind of fractures(2,4-10). Tibia eminence fracture results in anterior knee instability and occasionally anterior impingement during knee extension when the avulsion fragment is displaced(11). The goal of treatment for displaced tibial intercondylar eminence fracture is anatomic reduction. Disadvantages of screw fixation include risks of comminution of the fracture fragment, impingement due to prominent screw head, and the need for hardware removal. Because of these risks, some surgeons preferred arthroscopic reduction and internal fixation using non-absorbable sutures passed through drill holes. Suture techniques may obviate the need for a second surgery for implant removal and impingement; but arthrofibrosis and limitation of joint motion due to postoperative immobilization have been reported(2.) It has been found that antegrade screw fixation is more effective in obtaining initial rigid fixation than pull-out suture fixation for ACL avulsion fractures(12).
Tibial eminence fractures have excellent prognosis. Previously, prolonged immobilization may lead to arthrofibrosis and a permanent loss of full extension. Therefore, earlier rehabilitation is crucial as it encourages a faster recovery and prevents the development of secondary complications. Rehabilitation is similar to ACL tear protocols activities include static cycling, leg presses, elastic theraband or tubing exercises.
The technique described in this report not only helps achieve good interfragmentary compression, but also prevents undue prominence of the screw head owing to its proper direction. The bicortical purchase of the screw adds to the stability of fracture fixation, allowing early joint movement and weight bearing. The parapatellar portal secures good visualization of the operative field, enabling the screw to fix the fracture fragment perpendicularly. Although rare but chances of fracture in cases of poor bone quality is to be considered.


Conclusion

Arthroscopic reduction and internal fixation with cannulated screws for type 3B fractures having ACL injury is a novel method with good results and without any complications.


References

1. Wiss DA, Watson JT. Fractures of the tibial plateau. In:Rockwood CA, Green DP, Bucholz RW, Heckman JD, eds. Rockwood and Green’s fractures in adults.Philadelphia: Lippincott-Raven, 1996;1920-1953.
2. Berg EE. Comminuted tibial eminence anterior cruciate ligament avulsion fractures: Failure of arthroscopic treatment. Arthroscopy1993;9:446-450.
3. Meyers MH, McKeever FM. Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg Am. 1970; 52(8):1677-1684.
4. McLennan JG. The role of arthroscopic surgery in the treatment of fractures of the intercondylar eminence of the tibia. J Bone Joint Surg Br1982;64:477-480.
5. Falstie-Jensen S, Sondergard Petersen PE. Incarceration of the meniscus in fractures of the intercondylar eminence of the tibia in children. Injury1984;15:236-238.
6. Matthews DE, Geissler WB. Arthroscopic suture fixation of displaced tibial eminence fractures.Arthroscopy1994;10:418-423.
7. Osti L, Merlo F, Bocchi L. Our experience in the arthroscopic treatment of fracture-avulsion of the tibial spine. Chir Organi Mov1997;82:295-299.
8. Kocher MS, Micheli LJ, Gerbino P, Hresko MT. Tibial eminence fractures in children: Prevalence of meniscal entrapment.Am J Sports Med2003;31:404-407.
9. Chandler JT, Miller TM: Tibial eminence fracture with meniscal entrapment.Arthroscopy1995;11:499-502.
10. Berg EE. Comminuted tibial eminence anterior cruciate ligament avulsion fractures: Failure of arthroscopic treatment. Arthroscopy1993;9:446-450.
11. Senekovic V, Veselko M. Anterograde arthroscopic fixation of avulsion fractures of the tibial eminence with a cannulated screw: Five-year results.Arthroscopy2003;19:54-61.
12. Kendall NS, Hsu SY, Chan KM. Fracture of the tibial spine in adults and children. A review of 31 cases. J Bone Joint Surg Br. 1992; 74(6):848-852.
13. Berg EE. Comminuted tibial eminence anterior cruciate ligament avulsion fractures: failure of arthroscopic treatment.Arthroscopy. 1993; 9(4):446-450.
14. Tsukada H, Ishibashi Y, Tsuda E, Hiraga Y, Toh S. A biomechanical comparison of repair techniques for anterior cruciate ligament tibial avulsion fracture under cyclic loading. Arthroscopy. 2005; 21(10):1197-1201.


How to Cite this article: Kadu V V, Saindane K A, Goghate N, Godghate N N. Arthroscopic reduction and Internal fixation (ARIF) using Parapatellar Approach – A modality for treating fracture Tibial eminence with ACL injury . Asian Journal of Arthroscopy  Apr- June 2016;1(1):43-45 .

Dr. Vikram V. Kadu

Dr. Vikram V. Kadu

Dr. K. A. Saindane

Dr. K. A. Saindane

Dr. Ninad Godghate

Dr. Ninad Godghate

Dr. Neha N Godghate

Dr. Neha N Godghate


(Abstract)      (Full Text HTML)      (Download PDF)