Tag Archive for: Cartilage.

Rajkumar Amaravathi, Renato Andrade, Ricardo Bastos, João Espregueira-Mendes

Volume 4 | Issue 1 | Jan – April 2019 | Page 15-22


Author: Rajkumar Amaravathi [1], Renato Andrade [2,3,4], Ricardo Bastos [2,3,5,6], João Espregueira-Mendes [2]

[1] Department Of Orthopedics, Division of Arthroscopy and Sports Surgery, St. John’s Medical College and Hospital, Bangalore 560034,India
[2] Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal.
[3] Dom Henrique Research Centre, Porto, Portugal.
[4] Faculty of Sports, University of Porto, Porto, Portugal.
[5] Fluminense Federal University, Niteroi, Brazil.
[6] ICVS/3B’s-PT Government Associate Laboratory, Guimarães, Portugal.
[7] School of Medicine, Minho University, Braga, Portugal.

Address of Correspondence
Dr João Espregueira-Mendes,
M.D., Ph.D.; Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence,
Estádio do Dragão, Entrada Nascente, Piso -3, 4350-415, Porto, Portugal.
Email: espregueira@dhresearchcentre.com


Abstract

Osteochondral autologous transplantation is a surgical procedure that involves the transplant of the autologous cartilage from the non-weight bearing areas of the knee to the articular defect. It has the advantage of being a single stage procedure, repairs the subchondral bone, provides hyaline cartilage and allows a fast return to play. It is indicated for small and medium-sized defects, but the mosaicplasty technique allows treating defects up to 9 cm2. A major disadvantage of this technique is the donor site morbidity associated with the graft harvesting. To overcome this drawback, we harvest the autografts from the upper tibio-fibular joint with low or none donor site morbidity. Osteochondral autologous transplantation and mosaicplasty procedures remain an excellent option for small to medium osteochondral injuries resulting in long-term good to excellent clinical and imaging outcomes.Osteochondral autologous transplantation is a surgical procedure that involves the transplant of the autologous cartilage from the non-weight bearing areas of the knee to the articular defect. It has the advantage of being a single stage procedure, repairs the subchondral bone, provides hyaline cartilage and allows a fast return to play. It is indicated for small and medium-sized defects, but the mosaicplasty technique allows treating defects up to 9 cm2. A major disadvantage of this technique is the donor site morbidity associated with graft harvesting. To overcome this drawback, we harvest the autografts from the upper tibio-fibular joint with low or none donor site morbidity. Osteochondral autologous transplantation and mosaicplasty procedures remain an excellent option for small to medium osteochondral injuries resulting in long-term good to excellent clinical and imaging outcomes.


References

1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456-460.
2. Cognault J, Seurat O, Chaussard C, Ionescu S, Saragaglia D. Return to sports after autogenous osteochondral mosaicplasty of the femoral condyles: 25 cases at a mean follow-up of 9 years. Orthop Traumatol Surg Res. 2015;101:313-317.
3. Heijink A, Gomoll AH, Madry H, Drobnič M, Filardo G, Espregueira-Mendes J, Van Dijk CN. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20:423-435.
4. Gomoll A, Filardo G, De Girolamo L, Esprequeira-Mendes J, Marcacci M, Rodkey W, Steadman R, Zaffagnini S, Kon E. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc. 2012;20:450-466.
5. Vannini F, Spalding T, Andriolo L et al. Sport, and early osteoarthritis: the role of sport in aetiology, progression, and treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24:1786-1796.
6. Heir S, Nerhus TK, Røtterud JH, Løken S, Ekeland A, Engebretsen L, Årøen A. Focal Cartilage Defects in the Knee Impair Quality of Life as Much as Severe Osteoarthritis: A Comparison of Knee Injury and Osteoarthritis Outcome Score in 4 Patient Categories Scheduled for Knee Surgery. Am J Sports Med. 2009;38:231-237.
7. Krych AJ, Gobbi A, Lattermann C, Nakamura N. Articular cartilage solutions for the knee: present challenges and future direction. JISAKOS. 2016;1:93-104.
8. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Südkamp N. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14:1119-1125.
9. Gudas R, Kalesinskas RJ, Kimtys V, Stankevic̆ius E, Tolius̆is V, Bernotavic̆ius G, Smailys A. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21:1066-1075.
10. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-Year Outcome After Autologous Chondrocyte Transplantation of the Knee. Clin Orthop Relat Res. 2000;374:212-234.
11. Hangody L, Fuels P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85-A Suppl 2:25-32.
12. Andrade R, Vasta S, Pereira R, Pereira H, Papalia R, Karahan M, Oliveira JM, Reis RL, Espregueira-Mendes J. Knee donor-site morbidity after mosaicplasty–a systematic review. J Exp Orthop. 2016;3:31.
13. Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, Da Silva MV, Monteiro A, Oliveira JM, Reis RL. Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc. 2012;20:1136-1142.
14. Hangody L, Vasarhelyi G, Hangody LR, Sukosd Z, Tibay G, Bartha L, Bodo G. Autologous osteochondral grafting-technique and long-term results. Injury. 2008;39 Suppl 1:S32-39.
15. Camp CL, Stuart MJ, Krych AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health. 2014;6:265-273.
16. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85-A Suppl 2:58-69.
17. Trattnig S, Domayer S, Welsch GW, Mosher T, Eckstein F. MR imaging of cartilage and its repair in the knee-a review. Eur Radiol. 2009;19:1582-1594.
18. Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand. 1996;67:165-168.
19. Garretson RB, Katolik LI, Verma N, Beck PR, Bach BR, Cole BJ. Contact Pressure at Osteochondral Donor Sites in the Patellofemoral Joint. Am J Sports Med. 2004;32:967-974.
20. Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Van CM.Biomechanical and Topographic Considerations for Autologous Osteochondral Grafting in the Knee. Am J Sports Med; 2001;29:201-206.
21. Thaunat M, Couchon S, Lunn J, Charrois O, Fallet L, Beaufils P. Cartilage thickness matching of selected donor and recipient sites for osteochondral autografting of the medial femoral condyle. Knee Surg Sports Traumatol Arthrosc. 2007;15:381-386.
22. Keeling JJ, Gwinn DE, McGuigan FX. A comparison of open versus arthroscopic harvesting of osteochondral autografts. Knee. 2009;16:458-462.
23. Duchow J, Hess T, Kohn D. Primary stability of press-fit-implanted osteochondral grafts: influence of graft size, repeated insertion, and harvesting technique. Am J Sports Med. 2000;28:24-27.
24. Makino T, Fujioka H, Terukina M, Yoshiya S, Matsui N, Kurosaka M. The effect of graft sizing on osteochondral transplantation. Arthroscopy. 2004;20:837-840.
25. Huang FS, Simonian PT, Norman AG, Clark JM. Effects of small incongruities in a sheep model of osteochondral autografting. Am J Sports Med. 2004;32:1842-1848.
26. Patil S, Butcher W, D’lima DD, Steklov N, Bugbee WD, Hoenecke HR. Effect of osteochondral graft insertion forces on chondrocyte viability. Am J Sports Med. 2008;36:1726-1732.
27. Kock N, van Susante J, Wymenga A, Buma P. Histological evaluation of a mosaicplasty of the femoral condyle—retrieval specimens obtained after total knee arthroplasty—a case report. Acta Orthop Scand. 2004;75:505-508.
28. Ahmad CS, Guiney WB, Drinkwater CJ. Evaluation of donor site intrinsic healing response in autologous osteochondral grafting of the knee. Arthroscopy. 2002;18:95-98.
29. Espregueira-Mendes J, Andrade R, Monteiro A, Pereira H, da Silva MV, Oliveira JM, Reis RL. Mosaicplasty Using Grafts From the Upper Tibiofibular Joint. Arthrosc Tech. 2017;6:e1979-e1987.
30. Robert H, Lambotte J, Flicoteaux R. Arthroscopic measurements of cartilage lesions of the knee condyle. Principles and experimental validation of a new method. Cartilage. 2011;2: 237–245
31. Bobić V.Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg Sports Traumatol Arthrosc. 1996;3:262-264.
32. Evans PJ, Miniaci A, Hurtig MB. Manual punch versus power harvesting of osteochondral grafts. Arthroscopy. 2004;20:306-310.
33. Hurtig M, Evans P, Pearce S, Clarnette R, Miniaci A The effect of graft size and number on the outcome of mosaic arthroplasty resurfacing: an experimental model in sheep. In: Transactions, 18th Annual Meeting of the Arthroscopy Association of North America, Vancouver, 1999:16-17.
34. Bader S, Miniaci A. Mosaicplasty. Orthopedics. 2011;32:678-678.
35. Espregueira-Mendes J, Da Silva MV. Anatomy of the proximal tibiofibular joint. Knee Surg Sports Traumatol Arthrosc. 2006;14:241-249.
36. Andrade R, Pereira R, Bastos R, Saavedra C, Pereira H, Laver L, Landreau P, Espregueira-Mendes J. Management of Cartilage Injuries in Handball. In: Laver, L., Landreau, P., Seil, R., Popovic, N. (Eds). Handball Sports Medicine: Basic Science, Injury Management and Return to Sport. Springer; 2018, p. 325-340.
37. Andrade R, Pereira R, Bastos R, Pereira H, Oliveira JM, Reis RL, Espregueira-Mendes J. Return to Play Following Cartilage Injuries. In: Musahl, V., Karlsson, J., Krutsch, W., Mandelbaum, B.R., Espregueira-Mendes, J., d’Hooghe, P. (Eds). Return to Play in Football: An Evidence-based Approach. Springer; 2018, p. 593-610.
38. Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Villa SD. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther. 2012; 42:254-273.
39. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint: a prospective, comparative trial. J Bone Joint Surg Am. 2013;85:185-192.
40. Bentley G, Biant L, Carrington R, Akmal M, Goldberg A, Williams A, Skinner J, Pringle J. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85:223-230.
41. Jungmann PM, Gersing AS, Baumann F et al. Cartilage repair surgery prevents progression of knee degeneration. Knee Surg Sports Traumatol Arthrosc. 2018.
42. Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15-17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Spots Med. 2018;46:826-831.
43. Gudas R, Gudaite A, Mickevicius T, Masiulis N, Simonaityte R, Cekanauskas E, Skurvydas A. Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy. 2013;29:89-97.
44. Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E, Basevicius A. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med. 2012;40:2499-2508.
45. Gudas R, Simonaityte R, Cekanauskas E, Tamosiunas R. A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop. 2012;29:741-748.
46. Lim HC, Bae JH, Song SH, Park YE, Kim SJ. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res. 2012;470:2261-2267.
47. Ulstein S, Aroen A, Rotterud JH, Loken S, Engebretsen L, Heir S. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc. 2014;22:1207-1215.
48. Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med. 2009;37 Suppl 1:167s-176s.
49. Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL, Espregueira-Mendes J. Prevalence of articular cartilage lesions and surgical clinical outcomes in football (soccer) players’ knees: a systematic review. Arthroscopy. 2016;32:1466-1477.
50. Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ, 3rd. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25:3186-3196.


How to Cite this article: Rajkumar Amaravathi R, Andrade R, Bastos R, Espregueira-Mendes J. The Mosaicplasty / OAT procedure: Technique, Pearls and Pitfalls. Asian Journal Arthroscopy. Jan-April 2019;4(1):15-22 .


(Abstract)      (Full Text HTML)      (Download PDF)


Endoscopic Plantar Fasciotomy with Gastrocnemius Recession for Chronic Plantar Fasciitis

Kelsey L. Wise, Jeffrey A. Macalena

Volume 3 | Issue 1 | Jan – Apr 2018 | Page 30-35


Author: Kelsey L Wise [1], Jeffrey A Macalena [1]

[1] Department of Orthopaedic Surgery, University of Minnesota, 2450 Riverside Avenue South, Suite R200, Minneapolis, MN 55454.

Address of Correspondence
Dr. Jeffrey A. Macalena,
Department of Orthopaedic Surgery, University of Minnesota, 2450 Riverside Avenue South, Suite R200, Minneapolis, MN 55454.
E-mail: maca0049@umn.edu


Abstract

Patellar cartilage has a poor capacity for healing because of the avascular and hypocellular nature of articular cartilage. Surgical options for cartilage defects are varied and include repair, regeneration, and reconstruction. Open reduction internal fixation of chondral defects should be attempted when a large chondral fragment with bone is present. This is frequently seen following patellar dislocation, patellar fracture, or in the setting of osteochondritis dissecans lesions. Cartilage regeneration options include microfracture and a bone marrow-stimulating technique that involves penetration of the subchondral bone. This technique is best for small, isolated defects. Augmentation to microfracture with biologically active adjuncts is becoming more widely available and is thought to enhance stem cell production and tissue regeneration. Cartilage reconstruction options such as autologous chondrocyte implantation area cell-based therapy that develops hyaline-like cartilage, as opposed to the fibrocartilage of microfracture, and has the added advantage of ease in contouring to patellar anatomy. Short-term data suggest improvement of clinical outcomes for most patellar cartilage techniques; however, long-term studies are needed to assess the durability and clinical outcomes of these evolving procedures.
Keywords: Patellar, Chondral, Cartilage.


References

1. Brattstroem H. Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and x-ray-anatomical investigation. Acta Orthop ScandSuppl 1964;68Suppl 68:1-148.
2. Goldthwait JE. V. Permanent dislocation of the patella. The report of a case of twenty years’ duration, successfully treated by transplantation of the patella tendons with the tubercle of the tibia. Ann Surg 1899;29:62-8.
3. Hauser ED. Total tendon transplant for slipping patella: A new operation for recurrent dislocation of the patella 1938. ClinOrthopRelat Res 2006;452:7-16.
4. Roux C. Luxation habituelle de la rotule. Traitementopératoire/[Recurrent dislocation of the patella. Operative treatment]. Rev Chir 1888;8:682-9.
5. Dejour D, Byn P, Ntagiopoulos PG. The lyon’s sulcus-deepening trochleoplasty in previous unsuccessful patellofemoral surgery. IntOrthop 2013;37:433-9.
6. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: An anatomic radiographic study. Knee Surg Sports TraumatolArthrosc 1994;2:19-26.
7. Trillat A, Dejour H, Couette A. Diagnostic et traitement des subluxation récidivantes de la rotule/[Diagnosis and treatment of recurrent dislocations of the patella]. Rev ChirOrthopReparatriceAppar Mot 1964;50:813-24.
8. Campbell WC, Edmonson AS, Crenshaw AH. Campbell’s Operative Orthopaedics. 6th ed. St. Louis: Mosby; 1980.
9. Hawkins RJ, Bell RH, Anisette G. Acute patellar dislocations. The natural history. Am J Sports Med 1986;14:117-20.
10. Macnab I. Recurrent dislocation of the patella. J Bone Joint Surg [Am] 1952;34:957-67.
11. Arendt EA, Donell ST, Sillanpää PJ, Feller JA. The management of lateral patellar dislocation: State of the art. J ISAKOS 2017;2:205-12.
12. Tensho K, Akaoka Y, Shimodaira H, Takanashi S, Ikegami S, Kato H, et al. What components comprise the measurement of the tibial tuberosity-trochlear groove distance in a patellar dislocation population? J Bone Joint Surg Am 2015;97:1441-8.
13. Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S, et al. Tibial tubercle-posterior cruciate ligament distance: A new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 2012;40:1119-25.
14. Heidenreich MJ, Camp CL, Dahm DL, Stuart MJ, Levy BA, Krych AJ, et al. The contribution of the tibial tubercle to patellar instability: Analysis of tibial tubercle-trochlear groove (TT-TG) and tibial tubercle-posterior cruciate ligament (TT-PCL) distances. Knee Surg Sports TraumatolArthrosc 2017;25:2347-51.
15. Arendt EA, England K, Agel J, Tompkins MA. An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports TraumatolArthrosc 2017;25:3099-107.
16. Askenberger M, Janarv PM, Finnbogason T, Arendt EA. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: A Prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 2017;45:50-8.
17. Matsushita T, Kuroda R, Oka S, Matsumoto T, Takayama K, Kurosaka M, et al. Clinical outcomes of medial patellofemoral ligament reconstruction in patients with an increased tibial tuberosity-trochlear groove distance. Knee Surg Sports TraumatolArthrosc 2014;22:2438-44.
18. Fulkerson JP. Anteromedialization of the tibial tuberosity for patellofemoral malalignment. ClinOrthopRelat Res 1983;177:176-81.
19. Blumensaat C. Die lageabweichungen und verrenkungen der kniescheibe/[The positional deviation and dislocation of the kneecap]. In: Payr E, Kirschner M, editors. Ergebnisse der Chirurgie und Orthopädie. Einunddreissigster Band. Berlin: Springer-Verlag; 1938. p. 149-223.
20. Brattström H. Patella alta in non-dislocating knee joints. ActaOrthopScand 1970;41:578-88.
21. Geenen E, Molenaers G, Martens M. Patella alta in patellofemoral instability. ActaOrthopBelg 1989;55:387-93.
22. Lancourt JE, Cristini JA. Patella alta and patella infera. Their etiological role in patellar dislocation, chondromalacia, and apophysitis of the tibial tubercle. J Bone Joint Surg Am 1975;57:1112-5.
23. Insall J, Salvati E. Patella position in the normal knee joint. Radiology 1971;101:101-4.
24. Grelsamer RP, Meadows S. The modified insall-salvati ratio for assessment of patellar height. ClinOrthopRelat Res 1992;282:170-6.
25. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Patella infera. Apropos of 128 cases. Rev ChirOrthopReparatriceAppar Mot 1982;68:317-25.
26. Caton J. Method of measuring the height of the patella. ActaOrthopBelg 1989;55:385-6.
27. Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg Br 1977;59:241-2.
28. Biedert RM, Albrecht S. The patellotrochlear index: A new index for assessing patellar height. Knee Surg Sports TraumatolArthrosc 2006;14:707-12.
29. Bernageau J, Goutallier D, Debeyre J, Ferrané J. Nouvelle technique d’exploration de l’articulationfémoro-patellaire: Incidences axiales quadriceps décontractés et quadriceps contractés. [New exploration technique of the patellofemoral joint. Relaxed axial quadriceps and contracted quadriceps]. Rev ChirOrthopReparatriceAppar Mot 1975;61Suppl 2:286-90.
30. Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R, et al. Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med 2013;41:374-84.
31. Caton JH, Dejour D. Tibial tubercle osteotomy in patello-femoral instability and in patellar height abnormality. IntOrthop 2010;34:305-9.
32. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee 2003;10:215-20.
33. Ellera Gomes JL. Medial patellofemoral ligament reconstruction for recurrent dislocation of the patella: A preliminary report. Arthroscopy 1992;8:335-40.


How to Cite this article:. Wise KL, Macalena JA. Management of Patellar Chondral Defects. Asian Journal of Arthroscopy Jan – April 2018;3(1):30-35 .


(Abstract)      (Full Text HTML)      (Download PDF)