
Introduction
The word meniscus comes from the Greek 
word me-niskos, meaning “crescent,” 
diminutive of me-ne-, meaning “moon.” The 
menisci are semilunar discs of 
fibrocartilaginous tissue which are vital for 
the normal biomechanics and long-term 
health of the knee joint [1]
The characteristic shape of the lateral and 
medial menisci is attained between the 8th 
and 10th week of gestation. They arise from 
a condensation of the intermediate layer of 
mesenchymal tissue to form attachments to 
the surrounding joint capsule.[2,3]

Gross Anatomy
These crescent-shaped wedges of 
fibrocartilage are located on the medial and 
lateral aspects of the knee joint (Fig. 1A,1B). 
The peripheral, vascular border of each 
meniscus is thick, convex, and attached to the 
joint capsule. The innermost border tapers to 
a thin free edge. The superior surfaces of 

menisci are concave, enabling effective 
articulation with their respective convex 
femoral condyles. The inferior surfaces are 
flat to accommodate the tibial plateau [4,5].

Medial Meniscus
The medial meniscus is a C-shaped structure 
larger in radius than the lateral meniscus, 
with the posterior horn being wider than the 
anterior. The anterior horn is attached firmly 
to the tibia anterior to the intercondylar 
eminence and to the anterior cruciate 
ligament. The posterior horn is anchored 
immediately in front of the attachments of 
the posterior cruciate ligament posterior to 
the intercondylar eminence. Its entire 
peripheral border is firmly attached to the 
medial capsule and through the coronary 
ligament to the upper border of the tibia. At 
its midpoint, the medial meniscus is more 
firmly attached to the femur through a 
condensation in the joint capsule known as 
the deep medial collateral ligament [5]. The 

transverse, or “intermeniscal,” ligament is a 
fibrous band of tissue that connects the 
anterior horn of the medial meniscus to 
the anterior horn of the lateral meniscus 
[5,6].

Lateral Meniscus
The lateral meniscus is more circular in 
form, covering up to two thirds of the 
articular surface of the underlying tibial 
plateau [7]. The anterior horn is attached 
to the tibia medially in front of the 

intercondylar eminence, whereas the 
posterior horn inserts into the posterior 
aspect of the intercondylar eminence and in 
front of the posterior attachment of the 
medial meniscus. The lateral meniscus is 
loosely attached to the capsular ligament; 
however, these fibers do not attach to the 
lateral collateral ligament. The posterior 
horn of the lateral meniscus attaches to the 
inner aspect of the medial femoral condyle 
via the anterior and posterior 
meniscofemoral ligaments of Humphrey 
and Wrisberg, respectively, which originate 
near the origin of the PCL (Fig. 1A) [8]. 
Their estimated prevalence is 74 % for 
Humphrey ligament, 69 % for Wrisberg 
ligament, and both ligaments found 
together in around 50 % of knees [9]. The 
lateral meniscus is smaller in diameter, 
thicker in periphery, wider in body, and 
more mobile than the medial meniscus.

Extracellular matrix and cellularity
Considering composition by wet weight, the 
meniscus has high water content (72 %). The 
remaining 28 % consists of an organic 
component, mostly ECM and cells.10 
Collagens comprise the majority (75 %) of 
the organic matter, followed by GAGs (17 
%), DNA (2 %), adhesion glycoproteins (<1 
%), and elastin (<1 %) [10,11]. These 
proportions vary according to age, injury, or 
pathological conditions [12].
Collagen is the main fibrillar component of 
the meniscus. Different collagen types exist 
in various quantities in each region of 
meniscus. In the red–red zone, type I 
collagen is predominant (80 % composition 
in dry weight). In the white–white zone, 60 % 
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is type II collagen and 40 % is type I collagen 
[13]. The major orientation of collagen fibers 
in the meniscus is circumferential; radial 
fibers and perforating fibers also are 
present.(Fig. 3) [13]
Proteoglycans are heavily glycosylated 
molecules that constitute a major component 
of the meniscus ECM [14]. These molecules 
are comprised of a core protein which is 
decorated with glycosaminoglycans (GAGs). 
The main types of GAGs found in normal 
human meniscal tissue are chondroitin 6 
sulfate (60%), dermatan sulfate(20-30%), 
chondroitin 4 sulfate (10-20%), and keratin 
sulfate(15%) [15]. Their main function is to 
enable the meniscus to absorb water, whose 
confinement supports the tissue under 
compression [10].
Adhesion glycoproteins are also important 
components of the meniscus matrix, as they 
serve as a link between ECM components 
and cells [16]. The main adhesion 
glycoproteins present in the human meniscus 
are fibronectin, thrombospondin, and 
collagen VI [16,17].
Outer zone cells have an oval, fusiform shape 
and are similar in appearance and behaviour 
to fibroblasts, described as fibroblast-like 
cells [18]. The matrix surrounding the cells is 
mainly comprised of type I collagen, with 
small percentages of glycoproteins and 
collagen types III and V present. In contrast, 
cells in the inner portion have rounded 
appearance and are embedded in an ECM 
comprising largely type II collagen 
intermingled with a smaller but significant 
amount of type I collagen and higher 
concentration of GAGs [18]. This relative 
abundance of collagen type II and aggrecan 
in the inner region is more reminiscent of 

hyaline articular cartilage. Therefore, cells in 
this region are classified as 
fibrochondrocytes or chondrocyte like cells. 
In summary, cell phenotype and ECM 
composition render the outer portion of the 
meniscus akin to fibrocartilage, while the 
inner portion possesses similar, but not 
identical, traits to articular cartilage [19,20].

Vascularity and Innervation
The vascular supply to the medial and lateral 
menisci originates predominantly from the 
lateral and medial geniculate vessels (both 
inferior and superior). Branches from these 
vessels give rise to a perimeniscal capillary 
plexus within the synovial and capsular 
tissue. (Fig. 2) Radial branches from the 
plexus enter the meniscus at intervals, with a 
richer supply to the anterior and posterior 
horns. Vessels supplying the body are limited 
to the meniscus periphery with a variable 
penetration of 10–30 % for medial meniscus 
and 10–25 % for lateral one. This has 
important implication for meniscal healing 
[21]. The remaining portion of each 
meniscus (65% to 75%) receives 
nourishment from synovial fluid via 
diffusion or mechanical pumping (ie, joint 
motion) [22, 23].
The knee joint is innervated by the posterior 
articular branch of the posterior tibial nerve 
and the terminal branches of the obturator 
and femoral nerves. The lateral portion of the 
capsule is innervated by the recurrent 
peroneal branch of the common peroneal 
nerve. These nerve fibers penetrate the 
capsule and follow the vascular supply to the 
peripheral portion of the menisci and the 
anterior and posterior horns, where most of 
the nerve fibers are concentrated. The inner 

menisci core has no nerve fibers [21].

Biomechanical Function
The biomechanical function of the meniscus 
is a reflection of the gross and ultrastructural 
anatomy and of its relationship to the 
surrounding intra-articular and extra-
articular structures. The meniscus withstands 
many different forces such as shear, tension, 
and compression. It also plays a crucial role in 
load-bearing, load transmission, shock 
absorption, stability, propioception as well as 
lubrication and nutrition of articular cartilage 
[24-27]. They also serve to decrease contact 
stresses and increase contact area and 
congruity of the knee [28,29].

Meniscal Biomechanics
The biomechanical properties of the knee 
meniscus are appropriately tuned to 
withstand the forces exerted on the tissue. 
Many studies have helped to quantify the 
properties of the tissue both in humans and 
in animal models. According to these studies, 
the meniscus resists axial compression with 
an aggregate modulus of 100-150 kPa [30]. 
The tensile modulus of the tissue varies 
between the circumferential and radial 
directions; it is approximately 100-300 MPa 
circumferentially and 10 fold lower than this 
radially [31]. Finally, the shear modulus of 
the meniscus is approximately 120 kPa [31].
The contact forces on the meniscus within 
the human knee joint have been mapped. It 
has been calculated that the intact menisci 
occupy approximately 60% of the contact 
area between the articular cartilage of the 
femoral condyles and the tibial plateau, while 
they transmit >50% of the total axial load 
applied in the joint [32,33].
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Figure 1: (A)Anatomy of the meniscus viewed from above (B) Axial view of a right tibial plateau 
showing sections of the meniscus and their relationship to the cruciate ligaments. AL, anterior horn 
lateral meniscus; AM, anterior horn medial meniscus; PCL, posterior cruciate ligament; PL, posterior 
horn lateral meniscus; PM, posterior horn medial meniscus.

Figure 2: Blood supply to the meniscus enters 
from perimeniscal plexus and only peripheral 
portion of meniscus is vascularised.
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However, these percentages are highly 
dependent on degree of knee flexion and 
tissue health. For every 30� of knee flexion, 
the contact surface between the two knee 
bones decreases by 4% [34].
When the knee is in 90� of flexion the 
applied axial load in the joint is 85% greater 
than when it is in 0� of flexion [33]. In full 
knee flexion, the lateral meniscus transmits 
100% of the load in the lateral knee 
compartment, whereas the medial meniscus 
takes on approximately 50% of the medial 
load [29].
Studies confirm that there is a significant 
difference in segmental motion during 
flexion between the medial and lateral 
menisci. The anterior and posterior horn 
lateral meniscus ratio is smaller and indicates 
that the meniscus moves more as a single 
unit. [35]
Alternatively, the medial meniscus (as a 
whole) moves less than the lateral meniscus, 
displaying a greater anterior to posterior horn 
differential excursion. Thompson et al found 
that the area of least meniscal motion is the 
posterior medial corner, where the meniscus 
is constrained by its attachment to the tibial 
plateau by the meniscotibial portion of the 
posterior oblique ligament, which has been 
reported to be more prone to injury [35,36]. 
A reduction in the motion of the posterior 
horn of the medial meniscus is a potential 
mechanism for meniscal tears, with a 
resultant “trapping” of the fibrocartilage 
between the femoral condyle and the tibial 
plateau during full flexion. The greater 
differential between anterior and posterior 
horn excursion may place the medial 

meniscus at a greater 
risk of injury [35]. 
The differential of 
anterior horn to 
posterior horn 
motion allows the 
menisci to assume a 
decreasing radius 
with flexion, which 
correlates to the 
decreased radius of 
curvature of the 
posterior femoral 
condyles [35]. This 
change of radius 
allows the meniscus 
to maintain contact 
with the articulating 

surface of both the femur and the tibia 
throughout flexion.

Load Transmission
Fairbank described the increased incidence 
and predictable degenerative changes of the 
articular surfaces in completely 
meniscectomized knees [37]. Weightbearing 
produces axial forces across the knee, which 
compress the menisci, resulting in “hoop” 
(circumferential) stresses [38]. Hoop stresses 
are generated as axial forces and converted to 
tensile stresses along the circumferential 
collagen fibers of the meniscus. Firm 
attachments by the anterior and posterior 
insertional ligaments prevent the meniscus 
from extruding peripherally during load 
bearing [39]. Medial meniscectomy 
decreases contact area by 50% to 70% and 
increases contact stress by 100%. Lateral 
meniscectomy decreases contact area by 
40% to 50% but dramatically increases 
contact stress by 200% to 300% because of 
the relative convex surface of the lateral 
tibial plateau [40,41]. This significantly 
increases the load per unit area and may 
contribute to accelerated articular cartilage 
damage and degeneration [42].

Shock absorption 
The menisci play a vital role in attenuating 
the intermittent shock waves generated by 
impulse loading of the knee with normal gait 
[43,44]. Voloshin and Wosk showed that the 
normal knee has a shock-absorbing capacity 
about 20% higher than knees that have 
undergone meniscectomy [38]. As the 

inability of a joint system to absorb shock has 
been implicated in the development of 
osteoarthritis, the meniscus would appear to 
play an important role in maintaining the 
health of the knee joint [45]

Joint stability
The geometric structure of the menisci 
provides an important role in maintaining 
joint congruity and stability. The superior 
surface of each meniscus is concave, enabling 
effective articulation between the convex 
femoral condyles and flat tibial plateau. 
When the meniscus is intact, axial loading of 
the knee has a multidirectional stabilizing 
function, limiting excess motion in all 
directions [46]. The studies for effects of 
meniscectomy on joint laxity for 
anteroposterior and varus-valgus motions 
and rotation have indicated indicated that 
the effect on joint laxity depends on 
whether the ligaments of the knee are intact 
and whether the joint is bearing weight. In 
the presence of intact ligamentous 
structures, excision of the menisci produces 
small increases in joint laxity. In an anterior 
cruciate ligament–deficient knee, medial 
meniscectomy has been shown to increase 
tibial translation by 58% at 90�, whereas 
primary anterior and posterior translations 
were not affected by lateral meniscectomy 
[47]. Shoemaker and Markolf demonstrated 
that the posterior horn of the medial 
meniscus is the most important structure 
resisting an anterior tibial force in the ACL-
deficient knee. [48] Recently, Musahl et al 
reported that the lateral meniscus plays a 
role in anterior tibial translation during the 
pivot-shift maneuver [49].

Joint Nutrition and Lubrication
The menisci may also play a role in the 
nutrition and lubrication of the knee joint. 
The mechanics of this lubrication remains 
unknown; the menisci may compress 
synovial fluid into the articular cartilage, 
which reduces frictional forces during 
weightbearing [50]. There is a system of 
microcanals within the meniscus located 
close to the blood vessels, which 
communicates with the synovial cavity; these 
may provide fluid transport for nutrition and 
joint lubrication [51,52].
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Figure 3: Arrangement of fibers in the meniscus with interspersed cells.
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