Osteochondral Lesions of the Talar Dome

Dinshaw Pardiwala¹, Sanjay Soni¹, Nandan Rao¹, Pradeep Mandapalli¹

Abstract

Osteochondral lesions of the talar dome (OLT) are common, with up to 50% of acute ankle sprains and fractures developing some form of articular cartilage injury. Although the optimal treatment of OLT has remained controversial, in general, a non-displaced lesion with intact articular cartilage should be treated non-operatively with immobilization and restriction of activity. Surgical treatment is indicated for separated or displaced lesions, or if conservative treatment fails to relieve pain in undisplaced lesions. Surgical treatment aims to restore the articular surface with a repair tissue similar to native cartilage and to provide long-term symptomatic relief. If the size of the lesion is not larger than 15 mm, or deeper than 7 mm, bone marrow stimulation technique (BMS) including excision of loose osteochondral fragments, curettage of the crater, and drilling or microfracture can be performed via an anterior or posterior arthroscopic approach. Although BMS has been proven to be an effective treatment for symptomatic patients with small osteochondral lesions of the talus, the reparative tissue formed is fibrocartilage with less durability compared to normal hyaline cartilage. Evidence suggests that large and deep lesions (>15mm diameter, >7 mm depth), or failed previous BMS techniques, should be treated with a replacement strategy such as autologous chondrocyte implantation or osteochondral autograft transfer. Autologous chondrocyte implantation techniques require a two-stage procedure, the first for chondrocyte harvest and the second for implantation after in-vitro culture expansion. Theoretically, the transplantation of chondrocyte-like cells into the defect will result in hyaline-like repair tissue. Osteochondral autograft transfer replaces the defect with a cylinder of viable hyaline cartilage and bone from a donor site in the ipsilateral knee. The need for a malleolar osteotomy and difficulty in gaining perpendicular access to the talar dome is the major limitation of this technique.

Introduction

Osteochondral lesion of the talus (OLT) is a common condition and may range from a small defect in the talar dome articular cartilage, to subchondral cysts, or osteochondral fragments. These lesions have been described by a variety of names, including osteochondritis dissecans, transchondral dome fracture, and osteochondral fracture. The etiology and pathogenesis of osteochondral injuries has been attributed to a variety of factors [1,2]. While most OLTs can be attributed to a traumatic event, lesions of nontraumatic origin may also occur in up to 24% of cases [3,4].

Trauma remains the leading cause of OLT and this includes not only acute trauma as in a sprain or intra-articular fracture, but also repetitive microtrauma. A 4% radiographic incidence of OLT has been reported in a series of persistently symptomatic ankle sprains [5]. Additionally several studies have noted the incidence of bilateral OLT to be around 10% [6-8].

When OCDT occurs in a skeletally immature patient, it has been defined as juvenile osteochondritis dissecans of the talus (JOCDT) [9]. JOCDT is a rare pathology whose peculiarities are a subchondral bone alteration and a partially or completely detached osteochondral fragment. It's prevalence is difficult to be estimated, because of the large numbers of misdiagnosed and asymptomatic cases (at least 38.4% are incidental diagnosis) [9,10]. The proposed etiology involved in the development of an osteochondritis dissecans are trauma, vascular, genetic, and endogenous [11]. Presently, the most widely accepted theory encompasses a vascular etiology and a concomitant overuse traumatic insult. It is hypothesized that subchondral bone sufferance following an initial damage, either vascular and traumatic in origin, is the main cause of chondral apoptosis and subsequent cartilage degeneration, eventually producing an osteochondral fragment.

The incidence of medial OLT is higher than that of lateral lesions. Canale reported that all lateral lesions have a history of trauma, while only 64% of medial lesions report trauma [12]. Medial lesions are usually non-displaced, cup-shaped, deeper, and more likely to change into cystic lesions, while lateral lesions, are shallow, wafer-shaped, and more likely to have a displaced fragment from its crater. Historically, lesion position was considered to be anterolateral or posteromedial. However, an analysis of

¹Arthroscopy & Sports Orthopaedics Service, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India.

Address of Correspondence:
Dr. Dinshaw Pardiwala
Arthroscopy & Sports Orthopaedics Service, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India.
Email: Dinshaw.Pardiwala@relianceada.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
428 ankle MRIs with known OLts revealed 53% of lesions medial and middle, and 26% lateral and middle. The vast majority of lesions were the in the middle (80%), with relatively fewer anterior or posterior lesions (6% and 14%, respectively) [13]. The prognostic significance of lesion location remains a topic of debate [14], with some authors reporting better outcomes in patients with medial lesions compared with those with lateral lesions.

Clinico-radiological Diagnosis

OLts are most commonly seen in young adult males (70%). Most physical signs and symptoms are similar to those seen in a variety of other ankle problems, therefore the diagnosis must be confirmed by imaging. The presenting complaints include pain, swelling, stiffness of the ankle, and in some cases mechanical symptoms of locking and catching. Symptoms are often exacerbated by prolonged weight bearing. Most patients relate the pain to a single injury, or recurrent sprains. On physical examination, there is often tenderness, decreased range of motion, pain with inversion or dorsiflexion, or an ankle effusion. The lack of these signs on physical exam do not exclude an OLT and often the physical examination signs may be subtle or absent. Additionally, physical signs and symptoms may differ depending on the location of the lesion.

Radiographs are the first imaging study performed. Oblique and plantar flexion views that avoid tibial overlap generally show an OLT more clearly than standard projections. Plantar-flexed mortise views are better able to visualize posteromedial lesions and dorsiflexed radiographs are better able to visualize anteromedial or anterolateral lesions [2]. However, plain radiographs may miss up to 50% of the injuries because of an inability to assess the state of cartilage [4].

Magnetic resonance imaging can detect bone edema and other soft tissue injuries and has the capacity to distinguish between normal, native cartilage, repair cartilage (including fibrocartilage), and synovial tissue. While MRI has become the gold standard of imaging for OLT, it may exaggerate the severity of injury, either through signal patterns in the talus or due to associated marrow edema. Since lesion size has been established as a predictor of outcome and may be useful in directing treatment (lesions greater than 15 mm in diameter have shown a failure rate of 97% after arthroscopic bone marrow stimulation [15]) great care must be taken when measuring lesion size on MRI so that size is not over estimated. T2 cartilage mapping MRI offers greater sensitivity to cartilage change, and facilitates clarification of the depth of cartilage damage. Several studies have established the effectiveness of T2 mapping in quantitatively evaluating collagen fibre architecture of the repair cartilage [16].

While CT scans can be used in preoperative planning to visualize the location of the lesion, determine the necessity of malleolar osteotomy, and delineate subchondral cysts and bone loss, they are unable to assess cartilage as effectively as MRI. The addition of single photon emission computerized tomography (SPECT) imaging to CT adds to the diagnostic value of CT scanning by identifying co-existing pathology as well as showing the activity around the lesion of interest [17]. While MRI remains the imaging method of choice for most, CT and SPECT-CT imaging can better delineate the osseous anatomy and help determine the activity and extent of the lesion.

Staging

The original radiographic classification system for OLT was developed by Berndt and Harty in 1959 [6] and is still the most commonly used staging system (Table 1). Multiple additional classification systems have been proposed based on MRI. Mintz et al. showed an 83% correlation in staging classified by MRI integrity of the overlying cartilage and findings at the time of arthroscopy (Table 2). When patients were grouped into disease negative (Stage 0-I) or disease positive (Stage II-V), the authors noted a sensitivity of 95% and specificity of 100% [26].

Treatment

The natural history of OLT remains unclear due to a paucity of longitudinal follow-up studies. Various non-operative and operative treatment strategies have been described for OLT including excision, excision with bone marrow stimulation, excision with particulated juvenile cartilage grafting, retrograde drilling, autogenous chondrocyte implantation, osteochondral autograft transplantation, and osteochondral allograft transplantation [19-21]. There is no firm evidence in current literature that any one technique is superior [22-24].

Several studies have suggested patient factors...
and lesion characteristics that prognosticate the operative treatment of OLT. Lesions smaller than 15 mm [15, 25-27], contained lesions [28], and anterolateral lesions [28] are considered to be the positive prognostic indicators. Negative prognostic factors include older age (> 33-40 years old) [25, 29], lesions deeper than 7 mm [14, 29], lesions larger than 15 mm [25], cystic lesions [14], medial talar lesions [29], higher BMI, history of trauma, longer duration of symptoms, and presence of osteophytes [15].

NON-OPERATIVE TREATMENT
The treatment of OCLs is dictated by size and location of the lesion as well as the activity level of the patient. Asymptomatic OCLs of the talus, or mildly symptomatic lesions in pediatric populations may resolve without treatment, in which case there is variable need for immobilization or protective weight bearing [2]. Spontaneous healing in adult populations, on the other hand, is uncommon [30].

The indications for non-operative treatment include asymptomatic OLT, and patients who have symptomatic non-displaced OLT lesions (Berndt and Hardy grade I and grade II). Patients with intact cartilage as determined by MRI can also be treated non-operatively. In paediatric patients with open tibial physes, even symptomatic small lesions of grade III may be given a non-operative trial of treatment. The accepted contraindication of non-operative treatment is a displaced intra-articular osteochondral fragment [31][Fig.1].

Conservative management usually consists of rest/restriction of activities, non-weight bearing with immobilization in a short leg cast for 3 weeks to 4 months, followed by progressive weight bearing in a brace, with physical therapy for 6-10 weeks [32]. The purpose of conservative treatment is to decrease loading of the injured cartilage, resolve bone oedema, and prevent bone necrosis with collapse. Another objective is to allow the detached fragment to heal to the underlying and surrounding bone [33]. A short course of bisphosphonates may also help prevent bone necrosis. However, there is no consensus in literature regarding the duration of nonoperative treatment, method of immobilization, weight bearing status, the use of NSAIDs, and physical therapy protocol.

The functional outcomes after conservative treatment of OLT have been described in the literature with variable methods and results. In a review of 14 studies, conservative treatment of Berndt and Hardy type I, II, and medial type III lesions was effective in alleviating clinical symptoms in 59% of patients when treated with rest and activity restriction. Treatment was effective for 41% in patients immobilized in a plaster cast, and combined success rate of the 2 groups was 45% [34]. Klamer reported no increase in symptoms in 86% (43/48 ankles) of minimally symptomatic OLTs treated nonoperatively, followed at least two years with MRI [35]. On the other hand, nonoperative treatment provided good to excellent results in as few as 54% of patients with cystic OLTs [30]. In addition, few studies reported that arthritis of the ankle joint has been observed in approximately 50 percent of the patients who were treated with conservative treatment, but it could not be determined whether operative intervention might prevent the degeneration of the ankle joint [12]. McCullough studied a small case series of 10 patients with an average follow-up of 15 years and 11 months and found that OCD lesions may not heal over many years, but the ankle joints were relatively asymptomatic and arthritis was minimal [36]. In addition, no radiographic difference of arthritis was noted between the patients who underwent conservative versus operative procedure for OLT treatment.

Surgical Treatment
The aims of operative treatment are to obtain pain relief and restore ankle joint function by removal of the unstable chondral or osteochondral fragment, debridement of the OLT crater, stabilization of the surrounding articular cartilage rim and subchondral bone, and stimulate bone and cartilage healing. Arthroscopic bone marrow stimulation (BMS) is recommended for OLTs which are less than 15 mm in maximum surface

Figure 3: OLT larger than 15 mm or deeper than 7 mm are indicated for autologous chondrocyte implantation (ACI). ACI involves the transplantation of cultured chondrocytes into the defect, thereby facilitating a hyaline-rich repair. (a) CT scan of a stage III medial talar osteochondral lesion with cystic degeneration and a lesion depth of 10 mm. (b) Posteromedial talar lesions warrant an open approach with malleolar osteotomy for adequate exposure during implantation. (c) The fibrin ACI sets within 5 minutes of delivery. (d) Fixation of the pre-drilled malleolar osteotomy.

Figure 4: Well contained OLT are ideally suited for arthroscopic ACL. (a) and (b) MRI of lateral OLT reveals a well-contained grade IV lesion. (c) Arthroscopic OLT excision with stable margin preparation. (d) Fibrin ACI implantation performed with air arthroscopy. (e) and (f) Post operative MRI reveals complete homogenous graft fill with a continuous and well-defined lamina splendens.
accumulate into the base of the defect site pluripotent mesenchymal stem cells to at 5 mm intervals, thereby allowing stimulation is to breach the subchondral plate primary objective of bone-marrow curettage of the defect site, such that the postoperative pain. Bone marrow stimulation with low complication rates and minimal cost, technically easy, and minimally invasive, diameter [15,33,41]. This treatment is low-lesions of the talus that are less than 15 mm in diameter and no deeper than 7 mm [15,25]. On the other hand, large or deep lesions, and lesions that have failed primary bone marrow stimulation surgery should be considered for autologous chondrocyte implantation (ACI), or osteochondral autograft transplantation [21,37].

The indications for operative treatment include failure of conservative treatment for a period of 6 weeks to 6 months [15], and Berndt and Harty grade III and IV lesions [12,38]. There is no current consensus on the definitive timing for operative treatment. O’Farrell recommended that the best timing of surgery is within 12 months after an inciting injury [39]; however, Alexander demonstrated that delaying surgery several months (range, 3 to 36 months) did not affect the outcomes of operative treatment [40]. Postoperative protocols vary based on the specific treatment methods but generally involve early range of motion, protected weight-bearing in a brace, and delayed return to sports.

Arthroscopic Bone Marrow Stimulation (BMS)
Arthroscopic bone-marrow stimulation involving drilling or microfracture is the most commonly utilized primary treatment strategy for symptomatic osteochondral lesions of the talus that are less than 15 mm in diameter [15,33,41]. This treatment is low-cost, technically easy, and minimally invasive, with low complication rates and minimal postoperative pain. Bone marrow stimulation should be accompanied by excision and curettage of the defect site, such that the calcified layer is removed and a stable margin of healthy cartilage is achieved [Fig.2]. The primary objective of bone-marrow stimulation is to breach the subchondral plate at 5 mm intervals, thereby allowing pluripotent mesenchymal stem cells to accumulate into the base of the defect site from the underlying bone marrow. Intraoperatively, the release of fat droplets from the bone puncture confirms that adequate depth of awl penetration has been achieved. The subsequent formation of a fibrin clot initiates an inflammatory response, during which the release of cytokines and growth factors stimulates tissue healing. Mesenchymal stem cells begin to differentiate into chondrocyte-like cells that ultimately form a repair tissue expressing mainly type-II collagen in a proteoglycan matrix at six to eight weeks after injury. However, the ensuing surface fibrillation, proteoglycan depletion, and chondrocyte death result in a biological shift to fibrocartilaginous repair tissue exhibiting primarily type-I collagen at one year [42]. Type-I collagen retains inherently different biological and mechanical properties compared with hyaline cartilage, and it may degenerate over time.

A systematic review by Zengerink concluded that excision, curettage, and bone-marrow stimulation represented the treatment strategy of choice for primary osteochondral lesions of the talus, with an 85% success rate in a total of 386 patients [33]. Smaller lesions have a more successful clinical outcome. Chucksaii performed an analysis of 105 patients followed prospectively for a mean of 31.6 months and reported no treatment failures in lesions with a size of <15 mm, irrespective of lesion location [15]. Conversely, there was only one successful outcome in thirty-two patients with a lesion size of >15 mm. Cuttica assessed edema on follow-up MRI studies after microfracture in twenty-nine patients with thirty osteochondral lesions of the talus [43]. At a mean of 81.5 weeks after surgery, sixteen ankles (53%) had a fair or poor outcome, with better results seen in patients with a lower grade of edema intensity. Lee reported a case series using second-look arthroscopy, which was performed on twenty ankles one year after microfracture. Despite good to excellent AOFAS scores for 90% of the ankles, the repair tissue in eight ankles (40%) was graded as abnormal (grade III) according to the International Cartilage Repair Society system, while seven ankles (35%) demonstrated incomplete healing (stage D) according to the Ferkel and Cheng classification system [44]. Ferkel retrospectively evaluated fifty patients, including forty-four who had drilling and six who had an abrasion arthroplasty, with a mean follow-up of seventy-one month [45]. Thirty-four percent of the patients demonstrated advancement by at least one grade of arthritis on radiographs, and a subset of seventeen patients demonstrated a 35% decline in the modified Weber score over five years. Collectively, these data suggest deterioration of the fibrocartilage and declining outcome scores over time.

Autologous Chondrocyte Implantation
Autologous chondrocyte implantation involves the transplantation of viable, cultured chondrocytes into the defect, thereby facilitating a hyaline-rich repair tissue. Although earlier generations of ACI warranted an open approach with malleolar

Figure 5: Central talar osteochondral lesions and bifocal medial-lateral talar lesions are most suited for arthroscopic ACI since they are difficult to approach with open techniques including malleolar osteotomy. (a) and (b) MRI of central talar OLT. (c) Arthroscopic image of central talar OLT.

Figure 6: Arthroscopic ACI. (a) The step of cell implantation is performed as a dry arthroscopy. (b) The chondrocytes-fibrin mixture sets within 5 minutes of implantation.
osteotomy for implantation [Fig.3], the latest
generation of fibrin ACI incorporates an
injectable delivery system for the cultured
chondrocytes-fibrin mixture, and is
particularly suited to approach large anterior
[Fig.4] and central talar OLT [Fig.5] via an
arthroscopic approach. ACI involves a two-
stage operation. Stage 1 involves arthroscopic
debridement of the talar lesion with
ipsilateral knee arthroscopic chondral biopsy.
Stage 2 involves arthroscopic implantation of
the cultured chondrocytes 4-6 weeks
following stage 1. The step of cell
implantation is performed as a dry
arthroscopy. The chondrocytes-fibrin
mixture sets within 7 minutes of implantation
[Fig.6]. Larger lesions associated with
extensive bone loss are treated with bone
grafting along with ACI [Fig.7].

Giannini reported on forty-six patients who
underwent matrix-induced autologous
chondrocyte implantation in the talus
for posttraumatic lesions [46]. The
patients were followed prospectively
for thirty-six months and
demonstrated a significant
improvement in the mean AOFAS
score from 57.2 points preoperatively
to 89.5 points postoperatively. The initial
three patients in the series underwent
second-look arthroscopy with tissue
biopsy in which histological
examination revealed repair tissue
similar to hyaline cartilage. Magnan
evaluated thirty patients with a mean
lesion size of 2.36 cm² who were
treated with matrix-induced
autologous chondrocyte implantation
[47]. The mean AOFAS score
improved from 36.9 points
preoperatively to 83.9 points at a
mean follow-up of forty-five months
(range, eighteen to ninety-six
months). Only 50% of the patients
returned to their previous sporting activities. Quirbach
evaluated MRI T2 cartilage maps in twelve
patients after matrix induced autologous
chondrocyte implantation, and reported a
repair tissue that was no different from the
tissue in a healthy control group [48].

Autologous Osteochondral Transplantation

Autologous osteochondral transplantation
involves transplanting one or more
cylindrical osteochondral grafts harvested
from the ipsilateral knee to a defect site in the
talus. Placing the donor grafts in the most
congruent position possible to avoid surface
incongruities on the talus is critical. It is
indicated in patients with large cystic lesions
or secondarily after failed index procedures.
The advantages of this technique include
replacing the defect with viable hyaline
cartilage, without the need for a two-stage
procedure. The disadvantages are the need
for graft harvest and the associated donor site
morbidity, differences in surface curvature
between the graft and host tissues, the poor
potential for healing at the cartilage interface
of the graft, and the need for a malleolar
osteotomy.

Hangody reported on ninety-eight patients
who underwent autologous osteochondral
transplantation in the talus. 93% of the
patients had good to excellent clinical results
on the basis of evaluation with the Hannover
Scoring System [49]. Long-term donor-site
knee pain was present in 3%. Kennedy and
Murawsiki also reported good functional
results at a mean follow-up of 28.02 months
postoperatively in seventy-two patients who
underwent autologous osteochondral
transplantation [50]. Three patients (4%) reported donor-site knee pain after the
operation, and one patient required the

Table 1: Berndt and Harty radiographic classification of talar osteochondral lesions.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Compression fracture with intact overlying cartilage</td>
</tr>
<tr>
<td>II</td>
<td>Incomplete avulsion of an osteochondral fragment</td>
</tr>
<tr>
<td>III</td>
<td>Complete avulsion of an osteochondral fragment without displacement</td>
</tr>
<tr>
<td>IV</td>
<td>Avulsed fragment displaced into joint</td>
</tr>
</tbody>
</table>

Table 2: MRI grading system for osteochondral lesions of the talus.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal Cartilage</td>
</tr>
<tr>
<td>I</td>
<td>Abnormal cartilage signal but intact</td>
</tr>
<tr>
<td>II</td>
<td>Fibrillation or fissures in cartilage not extending to bone</td>
</tr>
<tr>
<td>III</td>
<td>Cartilage flap present or bone exposed</td>
</tr>
<tr>
<td>IV</td>
<td>Loose nondisplaced osteochondral fragment</td>
</tr>
<tr>
<td>V</td>
<td>Displaced osteochondral fragment</td>
</tr>
</tbody>
</table>
decompression of a cyst that had developed beneath the graft site two years after the operation.

Autologous osteochondral transplantation of the talus has the potential to provide good clinical outcomes in the short to medium-term time periods, with results that do not appear to decrease over time. The procedure is technically demanding since perpendicular access to the talar dome despite a medial malleolar osteotomy is a challenge. Moreover, implanting the donor grafts in a congruent position relative to the native cartilage is difficult. Although the osteotomy required to access the talar dome is not a cause for concern, donor-site knee pain is a complication in some series.

Conclusions & Keypoints

Osteochondral lesions of the talus are an increasingly diagnosed condition and are most commonly secondary to trauma. Current medical evidence suggests that smaller lesions can be effectively treated with bone marrow stimulation, however, larger and deeper lesions should be treated with either autologous chondrocyte implantation or osteochondral autograft transfer. The reported outcomes for each of these techniques, when used for the correct indications, are excellent.

References

31. Kristensen G, Lind T, Lavard P, Olsen PA. Fracture stage 4 of the

