Sagittal Tibial Osteotomy

Volume 6 | Issue 2 | July-December 2021 | Page 39-45 | Anshu Shekhar, Puneeth K, Sachin Tapasvi

DOI:10.13107/aja.2021.v06i02.033


Author: Anshu Shekhar [1], Puneeth K [2], Sachin Tapasvi [2]

[1] Sushrut OrthoPlastic Clinic, Raipur, Chhattisgarh, India.
[2] The Orthopaedic Speciality Clinic, Pune, Maharashtra, India.

Address of Correspondence:

Dr. Anshu Shekhar,
Consultant, Sushrut OrthoPlastic Clinic, Raipur, Chhattisgarh, India.
E-mail: dr.anshushekhar@gmail.com


Abstract

The anatomy proximal tibia is such that the anterior part is higher than the posterior, both medially and laterally, which causes a natural posterior tibial slope (PTS). The ‘normal range’ of this slope is variable across geography, ethnicity and gender. The morphology of the slope has profound impact on knee biomechanics, especially with respect to the anterior and posterior cruciate ligaments. A high slope increases forces across the anterior cruciate ligament (ACL), while the posterior cruciate ligament (PCL) function is compromised when the slope is flat or reversed (sloping anteriorly). A flat or reversed slope also contributes to the ‘bony’ component of a genu recurvatum deformity, which can become symptomatic. A sagittal tibial osteotomy (STO) is one in which the PTS is altered without changing the coronal plane alignment. When the slope is reduced, it is known as an extension STO and when the slope is increased, it is known as a flexion STO. This review describes the biomechanics of the PTS; the planning, indications, technique and complications of a STO and discusses some case examples.

Keywords: Posterior tibial slope, Osteotomy, Sagittal plane deformity, Revision anterior cruciate ligament reconstruction, Genu recurvatum


References

1. Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90(12):2724-2734. doi:10.2106/JBJS.G.01358

2. Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 1994;76(5):745-749.

3. Genin P, Weill G, Julliard R. La pente tibiale. Proposition pour une méthode de mesure [The tibial slope. Proposal for a measurement method]. J Radiol. 1993;74(1):27-33.

4. Pangaud C, Laumonerie P, Dagneaux L, LiArno S, Wellings P, Faizan A, Sharma A, Ollivier M. Measurement of the Posterior Tibial Slope Depends on Ethnicity, Sex, and Lower Limb Alignment: A Computed Tomography Analysis of 378 Healthy Participants. Orthop J Sports Med. 2020 Jan 24;8(1):2325967119895258.

5. Weinberg DS, Williamson DF, Gebhart JJ, Knapik DM, Voos JE. Differences in Medial and Lateral Posterior Tibial Slope: An Osteological Review of 1090 Tibiae Comparing Age, Sex, and Race. Am J Sports Med. 2017 Jan;45(1):106-113. doi: 10.1177/0363546516662449. Epub 2016 Oct 1. PMID: 27587744.

6. Aljuhani WS, Qasim SS, Alrasheed A, Altwalah J, Alsalman MJ. The effect of gender, age, and body mass index on the medial and lateral posterior tibial slopes: a magnetic resonance imaging study. Knee Surg Relat Res. 2021 Apr 8;33(1):12.

7. Zhang K, Han Q, Wang H, Yang K, Chen B, Zhang Y, Zhang S, Wang J, Chu H. Measurement of proximal tibial morphology in northeast Chinese population based on three-dimensional reconstruction computer tomography. Medicine (Baltimore). 2019 Nov;98(45):e17508.

8. Matsuda S, Miura H, Nagamine R, et al. Posterior tibial slope in the normal and varus knee. Am J Knee Surg. 1999;12(3):165-168.

9. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P. Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg. 2004;124(9):575-584. doi:10.1007/s00402-004-0728-8

10. Pandy MG, Shelburne KB. Dependence of cruciate-ligament loading on muscle forces and external load. J Biomech. 1997;30(10):1015-1024. doi:10.1016/s0021-9290(97)00070-5

11. Shelburne KB, Pandy MG. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J Biomech. 1997;30(2):163-176. doi:10.1016/s0021-9290(96)00119-4

12. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med. 2004;32(2):376-382. doi:10.1177/0363546503258880

13. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med. 2007;35(9):1443-1449. doi:10.1177/0363546507304665

14. Bernhardson AS, Aman ZS, Dornan GJ, Kemler BR, Storaci HW, Brady AW, Nakama GY, LaPrade RF. Tibial Slope and Its Effect on Force in Anterior Cruciate Ligament Grafts: Anterior Cruciate Ligament Force Increases Linearly as Posterior Tibial Slope Increases. Am J Sports Med. 2019 Feb;47(2):296-302.

15. McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA, Wojtys EM. The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am. 2011 Jul 20;93(14):1310-7.

16. Yamaguchi KT, Cheung EC, Markolf KL, Boguszewski DV, Mathew J, Lama CJ, McAllister DR, Petrigliano FA. Effects of Anterior Closing Wedge Tibial Osteotomy on Anterior Cruciate Ligament Force and Knee Kinematics. Am J Sports Med. 2018 Feb;46(2):370-377.

17. Imhoff FB, Mehl J, Comer BJ, Obopilwe E, Cote MP, Feucht MJ, Wylie JD, Imhoff AB, Arciero RA, Beitzel K. Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc. 2019 Oct;27(10):3381-3389.

18. Bowen JR, Morley DC, McInerny V, MacEwen GD. Treatment of genu recurvatum by proximal tibial closing-wedge/anterior displacement osteotomy. Clin Orthop Relat Res. 1983;(179):194-199.

19. Moroni A, Pezzuto V, Pompili M, Zinghi G. Proximal osteotomy of the tibia for the treatment of genu recurvatum in adults. J Bone Joint Surg Am. 1992;74(4):577-586.

20. Utzschneider S, Goettinger M, Weber P, et al. Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 2011;19:1643-1648.

21. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009 Aug;467(8):2066-72.

22. Luceri F, Basilico M, Batailler C, et al. Effects of sagittal tibial osteotomy on frontal alignment of the knee and patellar height. Int Orthop. 2020;44(11):2291-2298. doi:10.1007/s00264-020-04580-3

23. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP. Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med. 2013 Dec;41(12):2800-4.

24. Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA. 20-Year Outcomes of Anterior Cruciate Ligament Reconstruction With Hamstring Tendon Autograft: The Catastrophic Effect of Age and Posterior Tibial Slope. Am J Sports Med. 2018 Mar;46(3):531-543.

25. Lee CC, Youm YS, Cho SD, Jung SH, Bae MH, Park SJ, Kim HW. Does Posterior Tibial Slope Affect Graft Rupture Following Anterior Cruciate Ligament Reconstruction? Arthroscopy. 2018 Jul;34(7):2152-2155. doi: 10.1016/j.arthro.2018.01.058. Epub 2018 Mar 9. PMID: 29530354.

26. Ahmed I, Salmon L, Roe J, Pinczewski L. The long-term clinical and radiological outcomes in patients who suffer recurrent injuries to the anterior cruciate ligament after reconstruction. Bone Joint J. 2017 Mar;99-B(3):337-343. doi: 10.1302/0301-620X.99B3.37863. PMID: 28249973.

27. Friedmann, S., Agneskirchner, J. & Lobenhoffer, P. Extendierende und flektierende Tibiakopfosteotomien. Arthroskopie 21, 30–38 (2008).


How to Cite this article: Shekhar A, Puneeth K, Tapasvi S | Sagittal tibial osteotomy | Asian Journal of Arthroscopy | July-December 2021; 6(2): 39-45.


(Abstract Text HTML)      (Download PDF)